Surviving cave bats: auditory and behavioural defences in the Australian noctuid moth, Speiredonia spectans.

نویسندگان

  • James H Fullard
  • Matt E Jackson
  • David S Jacobs
  • Chris R Pavey
  • Chris J Burwell
چکیده

The Australian noctuid moth, Speiredonia spectans shares its subterranean day roosts (caves and abandoned mines) with insectivorous bats, some of which prey upon it. The capacity of this moth to survive is assumed to arise from its ability to listen for the bats' echolocation calls and take evasive action; however, the auditory characteristics of this moth or any tropically distributed Australian moth have never been examined. We investigated the ears of S. spectans and determined that they are among the most sensitive ever described for a noctuid moth. Using playbacks of cave-recorded bats, we determined that S. spectans is able to detect most of the calls of two co-habiting bats, Rhinolophus megaphyllus and Miniopterus australis, whose echolocation calls are dominated by frequencies ranging from 60 to 79 kHz. Video-recorded observations of this roost site show that S. spectans adjusts its flight activity to avoid bats but this defence may delay the normal emergence of the moths and leave some 'pinned down' in the roosts for the entire night. At a different day roost, we observed the auditory responses of one moth to the exceptionally high echolocation frequencies (150-160 kHz) of the bat Hipposideros ater and determined that S. spectans is unable to detect most of its calls. We suggest that this auditory constraint, in addition to the greater flight manoeuvrability of H. ater, renders S. spectans vulnerable to predation by this bat to the point of excluding the moth from day roosts where the bat occurs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Keeping up with Bats: Dynamic Auditory Tuning in a Moth

Many night-flying insects evolved ultrasound sensitive ears in response to acoustic predation by echolocating bats . Noctuid moths are most sensitive to frequencies at 20-40 kHz , the lower range of bat ultrasound . This may disadvantage the moth because noctuid-hunting bats in particular echolocate at higher frequencies shortly before prey capture and thus improve their echolocation and reduce...

متن کامل

The peripheral auditory characteristics of noctuid moths: information encoding and endogenous noise

The ability of the noctuid A1 cell acoustic receptor to encode biologically relevant information from bat echolocation calls is examined. Short-duration stimuli (less than approximately 6 ms) reduce the dynamic resolution of the receptor, making intensity, and hence range, estimates of foraging bats unreliable. This low dynamic range is further reduced by inaccurate encoding of stimulus intensi...

متن کامل

Hearing on the fly: the effects of wing position on noctuid moth hearing.

The ear of the noctuid moth has only two auditory neurons, A1 and A2, which function in detecting predatory bats. However, the noctuid's ears are located on the thorax behind the wings. Therefore, as these moths need to hear during flight, it was hypothesized that wing position may affect their hearing. The wing was fixed in three different positions: up, flat and down. An additional subset of ...

متن کامل

Auditory encoding during the last moment of a moth's life.

The simple auditory system of noctuoid moths has long been a model for anti-predator studies in neuroethology, although these ears have rarely been experimentally stimulated by the sounds they would encounter from naturally attacking bats. We exposed the ears of five noctuoid moth species to the pre-recorded echolocation calls of an attacking bat (Eptesicus fuscus) to observe the acoustic encod...

متن کامل

The peripheral auditory characteristics of noctuid moths: responses to the search-phase echolocation calls of bats

The noctuid moths Agrotis segetum and Noctua pronuba show peak auditory sensitivity between 15 and 25 kHz, and a maximum sensitivity of 35 dB SPL. A. segetum shows a temporal integration time of 69 ms. It is predicted that bats using high-frequency and short-duration calls will be acoustically less apparent to these moths. Short-duration frequency-modulated (FM) calls of Plecotus auritus are no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2008